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Abstract

Recent advancements in diffusion models, particularly the
architectural transformation from UNet-based models to
Diffusion Transformers (DiTs), significantly improve the
quality and scalability of image and video generation. How-
ever, despite their impressive capabilities, the substantial
computational costs of these large-scale models pose signif-
icant challenges for real-world deployment. Post-Training
Quantization (PTQ) emerges as a promising solution, en-
abling model compression and accelerated inference for
pretrained models, without the costly retraining. How-
ever, research on DiT quantization remains sparse, and
existing PTQ frameworks, primarily designed for tradi-
tional diffusion models, tend to suffer from biased quan-
tization, leading to notable performance degradation. In
this work, we identify that DiTs typically exhibit signifi-
cant spatial variance in both weights and activations, along
with temporal variance in activations. To address these
issues, we propose Q-DiT, a novel approach that seam-
lessly integrates two key techniques: automatic quantiza-
tion granularity allocation to handle the significant vari-
ance of weights and activations across input channels, and
sample-wise dynamic activation quantization to adaptively
capture activation changes across both timesteps and sam-
ples. Extensive experiments conducted on ImageNet and
VBench demonstrate the effectiveness of the proposed Q-
DiT. Specifically, when quantizing DiT-XL/2 to W6A8 on
ImageNet (256×256), Q-DiT achieves a remarkable reduc-
tion in FID by 1.09 compared to the baseline. Under the
more challenging W4A8 setting, it maintains high fidelity
in image and video generation, establishing a new bench-
mark for efficient, high-quality quantization in DiTs. Code
is available at https://github.com/Juanerx/Q-DiT.

1. Introduction
Diffusion models [6, 16, 26, 32] have emerged as a power-
ful base model for various tasks, ranging from computer
vision, natural language processing, multi-modal model-
ing, etc. The architectural design of diffusion models has

evolved significantly. Traditionally, these models employed
UNet [28] architecture due to their efficiency in managing
hierarchical feature representations. However, recent ad-
vances have shifted the focus towards diffusion transform-
ers (DiTs) [27], and notable examples, including Stable Dif-
fusion 3 [8] and Sora [4], have demonstrated its superior
performance and scalability for complex generative tasks.

Despite their success, a significant limitation of DiTs lies
in their inherently high latency in the inference. The itera-
tive denoising process, although effective, requires numer-
ous sampling steps, making real-time or large-scale applica-
tions computationally intensive. Model quantization offers
a particularly promising avenue to reduce inference latency,
and Post Training Quantization (PTQ) is particularly ap-
pealing for large models as it eliminates the need for retrain-
ing. However, the application of quantization techniques to
transformer-based diffusion models remains limited. Exist-
ing quantization methods for diffusion models [12, 13, 30]
primarily focus on UNet architecture and heavily rely on
reconstruction-based methods, challenging to scale to large
models [21, 25].

In this work, we aim to propose a customized quantiza-
tion method for DiTs. To achieve this, we first explore the
distinct characteristics of DiT models and identify two key
issues in DiT quantization: significant variance of weights
and activations across input channels and varying activa-
tions across different timesteps. Therefore, we propose Q-
DiT, consisting of a fine-grained group quantization strategy
and a dynamic activation quantization strategy. These two
designs address the aforementioned challenges individually
and collaboratively contribute to the proposed quantization
framework (see Fig. 1).

In particular, for the first challenge, a promising solu-
tion is group quantization [23, 40] which can manage high-
magnitude values at the group level. However, we observe
the non-monotonicity in group sizes, e.g., reducing group
size (increasing group number) does not always lead to bet-
ter performance. Consequently, we employ an evolution-
ary search algorithm to configure group sizes for quantiza-
tion across different model layers. This method utilizes the
Fréchet Inception Distance (FID) and Fréchet Video Dis-
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Figure 1. Overview of the proposed Q-DiT. The weights and activations within each layer are quantized with the same group size. Group
size configurations allocated for each layer are based on the evolutionary search results, which are guided by the FID/FVD score between
the real samples and samples generated by the quantized model. The activations are dynamically quantized during runtime.

tance (FVD) as metrics to directly correlate the quantiza-
tion effects with the visual quality of generated samples,
enabling a more targeted and effective quantization strategy.
The evolutionary approach not only identifies the optimal
group sizes but also ensures that the quantization process
adheres to predefined computational constraints, effectively
balancing performance with efficiency.

Furthermore, varying activations across the timesteps,
the second challenge, indicates that quantization parame-
ters calibrated at specific timesteps may not generalize well
in all timesteps. To address this variability, Q-DiT adopts
a sample-wise dynamic activation quantization mechanism,
which adapts with sample granularity to the changing dis-
tribution of activations throughout the diffusion process.
This approach significantly reduces quantization error by
adjusting quantization parameters on-the-fly, ensuring high-
quality image/video generation with minimal overhead.

In summary, our main contributions are as follows:
• We introduce Q-DiT, an accurate PTQ method designed

for DiTs. This method employs fine-grained group quan-
tization to effectively manage input channel variance in
both weights and activations, and it adopts sample-wise
dynamic activation quantization to adapt to activation
variations across different timesteps and samples.

• We identify that the default group size configuration is
sub-optimal and propose an evolutionary search strategy
to optimize group size allocation, which enhances the ef-
ficiency and efficacy of the quantization process.

• Extensive experiments on ImageNet and VBench demon-
strate that Q-DiT achieves lossless compression under
a W6A8 configuration and minimal degradation under

W4A8 for image and video generation, highlighting its
superior performance.

2. Related Work
Model quantization. Model quantization is a widely used
technique to reduce the model size and accelerate its infer-
ence speed by converting the model’s weights and activa-
tions from high-precision floating-point numbers to lower-
precision numbers. There are two primary approaches to
quantization: Quantization-Aware Training (QAT) [2, 5, 9]
and Post-Training Quantization (PTQ) [21, 25]. QAT inte-
grates the quantization process directly into the fine-tuning
phase, leveraging STE [1] to simultaneously optimize quan-
tizer parameters and model parameters during fine-tuning.
This approach restores the model’s performance degrada-
tion caused by quantization. However, QAT is resource-
intensive because it necessitates fine-tuning the model on
the original training dataset. In contrast, PTQ is far more ef-
ficient and practical, as it does not require model retraining.
PTQ operates by utilizing a small calibration dataset to ad-
just the quantization parameters for weights and activations,
facilitating significant model compression with minimal ef-
fort. Although PTQ is highly efficient, it can result in sig-
nificant performance degradation when applied to low-bit
quantization. Reconstruction-based method [21, 25] tries to
minimize performance degradation by reducing the recon-
struction error of each layer or each block. Although the
reconstruction-based method performs well in CNN, they
are not easy to scale up to a large model.
Quantization of transformers. Quantization of transform-
ers has been extensively researched in the contexts of both



Vision Transformers (ViTs) and Large Language Models
(LLMs). Specifically, PTQ4ViT [39] proposed the twin uni-
form quantizer to handle the special distributions of post-
softmax and post-GELU activations. RepQ-ViT [22] used
scale reparameterization to reduce the quantization error
of activations. For LLM, weight-only quantization quan-
tizes the weight to reduce the heavy memory movements
to achieve better inference efficiency. GPTQ [10] reduced
the bit-width to 4 bits per weight based on approximate
second-order information with weight-only quantization.
AWQ [23] proposed activation-aware weight quantization
to reduce the quantization error of salient weight. On the
other hand, weight-activation quantization further enhances
inference efficiency by quantizing both weight and activa-
tion but has to face activation outliers. LLM.int8() [7]
reduces the effect of outliers by keeping them in FP16 with
mixed-precision computations. Outlier Suppression [35]
reduces the quantization error of activations by using the
non-scaling LayerNorm. However, these quantization tech-
niques may not be directly applied to DiTs, due to their dif-
fusion model characteristics.
Quantization of diffusion models. Diffusion models tend
to have a slow inference speed due to the large number of
sampling steps required. Consequently, some recent studies
have focused on accelerating these models through quan-
tization techniques. PTQ4DM [30] and Q-diffusion [20]
discover activation variance across different denoising steps
and adopt reconstruction-based methods for quantization.
PTQD [13] finds the correlation between the quantization
noise and model output and proposes variance schedule cal-
ibration to rectify the uncorrelated part. TDQ [31] utilizes
an MLP layer to estimate the activation quantization pa-
rameters for each step. TMPQ-DM [33] further reduces
the sequence length of timestep along with the quantiza-
tion to reduce the overall costs. PTQ4DiT [36] introduces a
PTQ method tailored for Diffusion Transformers, address-
ing challenges like extreme channel magnitudes and tempo-
ral activation variability using Channel-wise Salience Bal-
ancing (CSB) and Spearman’s ρ-guided Salience Calibra-
tion (SSC), while achieving W4A8 quantization. Compar-
ison table of PTQ methods for diffusion models can be
found in the supplementary materials. These methods are
unable to handle simultaneously the characteristics of the
transformer architecture and the dynamics of activation dur-
ing denoising process, leading to significant performance
drops.

3. Observations of DiT Quantization
We find directly applying recent UNet-based quantization
methods to quantize DiTs will lead to significant perfor-
mance degradation. To understand the underlying reasons,
we explore the distinct characteristics of DiT models, par-
ticularly how they differ from UNet-based architectures in

Input channel

0 20040060080010001200 Outp
ut 

cha
nn

el

0
1000

2000
3000

4000

1

2

3

Input channel

0 20040060080010001200 Outp
ut 

cha
nn

el

0
1000

2000
3000

4000

1
2

3

4

Input channel

0 20040060080010001200 Outp
ut 

cha
nn

el

0
200

400
600

800
1000

1200

1

2

3

(a) Weight distribution

Channel

0 20040060080010001200

Tok
en

0
50

100
150

200
250

0.5
1.0
1.5
2.0

Channel

0 20040060080010001200

Tok
en

0
50

100
150

200
250

0.2
0.4
0.6
0.8
1.0

Channel

0 20040060080010001200

Tok
en

0
50

100
150

200
250

0.5

1.0

1.5

2.0

(b) Activation distribution

Figure 2. Distributions of weights and activations in different lay-
ers of DiT-XL/2. The red peaks indicate higher values, while the
blue areas represent lower values.

terms of weight and activation distributions.
Observation 1: DiTs exhibit significant variance of weights
and activations across input channels. As shown in Fig. 2a,
the variance of weights and activations across input chan-
nels is much more significant than the output channels. This
variance substantially affects quantization since common
methods typically apply channel-wise quantization along
the output channel for diffusion models [13, 30]. Besides,
we also find outliers persist in specific channels of the acti-
vation, as shown in Fig. 2b. This suggests that, if we con-
tinue to use tensor-wise quantization, these outliers will sig-
nificantly impact the quantization parameters, resulting in
substantial quantization errors for non-outliers.
Observation 2: Significant distribution shift of activations
across timesteps. We observe that the distribution of activa-
tions in DiT models undergoes significant changes at differ-
ent timesteps during the denoising process, as demonstrated
in Fig. 3 and Fig. 4. Further, we discovered that this tempo-
ral shift also exhibits significant variability across different
samples. The relevant experimental results are presented in
the supplementary materials.

4. Preliminary
We use uniform quantization to quantize both weights and
activations in this work, as it is more hardware-friendly [11,
19]. Particularly, uniform quantization divides the range of
floating-point values into equally spaced intervals, and each
interval is mapped to a discrete value. The uniform quan-
tization function Q that quantize input floating-point tensor
x into b bit integer tensor x̂ can be expressed as:

x̂ = Q(x; b) = s · (clip(⌊x
s
⌉+ Z, 0, 2b − 1)− Z), (1)
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Figure 3. Box plot showing the distribution of activation values
across various timesteps (from 50 to 0) for the DiT-XL/2 model
when generating one image from ImageNet at 256 × 256 resolu-
tion..
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Figure 4. Standard deviation of activations in MLP and atten-
tion layers across different blocks over 50 timesteps for DiT-XL/2
when generating one image from ImageNet at 256 × 256 resolu-
tion.

where s = max(x)−min(x)
2b−1

and Z = −
⌊
min(x)

s

⌉
. Here, ⌊·⌉

is the round operation, s is the scaling factor and Z denotes
the zero point.

5. Method: Q-DiT
As shown in Fig. 1, the proposed Q-DiT involves two novel
designs, including automatic quantization granularity allo-
cation and dynamic activation quantization. Here we intro-
duce them in the following parts.

5.1. Automatic Quantization Granularity Alloca-
tion

Base solution. A straightforward solution to deal with the
input channel-wise variance, as highlighted in observation
1, is to apply input channel-wise quantization, using dif-
ferent quantization parameters for each channel. However,
this approach compromises computational efficiency dur-
ing hardware deployment, as it prevents the full utilization
of low-precision computation due to the need for repeated
intermediate rescaling [3, 38].
Fine-grained group quantization. As discussed in recent

Table 1. Quantization results with varying group sizes on Ima-
geNet 256×256 and 512×512.

256×256 512×512

Group FID ↓ sFID ↓ Group FID ↓ sFID ↓

128 17.87 20.45 96 20.76 21.97
96 19.97 21.42 64 20.90 22.58

LLM quantization work [23, 40], a compromise approach
between input channel-wise quantization and tensor quan-
tization is the group quantization. As shown in Fig. 1, the
weight and activation matrices are divided into groups, and
then we perform quantization for each group separately.
Specifically, consider a matrix multiplication Y = XW in
a linear layer, where X ∈ Rn×din and W ∈ Rdin×dout . The
quantized value for each output element can be obtained by:

Ŷi,j =

din∑
k=0

X̂i,kŴk,j (2)

=

din/gll−1∑
u=0

gll∑
v=0

QX
u (Xi,ugll+v)Q

W
u (Wugll+v,j), (3)

where gll denotes the group size.
Non-monotonicity in quantization group selection. Ide-
ally, we can improve model performance by reducing the
group size (i.e., increase the group number) because finer-
grained quantization reduces quantization error. However,
as shown in Tab. 1, we have observed that smaller group
sizes do not always yield better results, where such exis-
tence of non-monotonicity in the quantization group further
demonstrates that DiT quantization is rather different com-
pared with LLM and ViT quantizations. For instance, when
the group size reduces from 128 to 96, the FID increases
by about 11.8%, from 17.87 to 19.97, indicating a degrada-
tion in the quality of generated images. This suggests that
there is an optimal group size configuration that can achieve
better quantization effects with the same average group size
or achieve the same quantization results with a larger aver-
age group size. Additionally, the sensitivity of each layer
in the model varies. By assigning different group sizes to
different layers, we can achieve high efficiency and quality
in both model performance and image generation.
Automatic group allocation. The primary challenge in al-
locating group sizes lies in identifying the correlation be-
tween the group size of each layer and the final genera-
tion performance of the diffusion model. Previous works
on mixed precision quantization focus on identifying sen-
sitivity indicators [21, 34] for each layer, such as the MSE
between the quantized layer and the full precision layer, and
then transforming this into an integer linear programming
(ILP) problem for optimization. However, we find that a
smaller MSE does not necessarily correspond to a reduced



performance degradation for DiT quantization, indicating
that the previous methods may be ineffective.

To this end, we directly use the FID as our metric for
image generation, defined as follows:

L(g) = FID(R,Gg). (4)

Similarly, for video generation models, we use the FVD as
our metric:

L(g) = FVD(R,Gg), (5)

where g = {g1, g2, . . . , gN} is the layer-wise group size
configuration and N is the number of quantized layers. R
and Gg denote the real samples and the samples generated
by the quantized model, respectively. We then employ an
evolutionary algorithm to optimize the following objective
function:

g∗ = argmin
g

L(g), s.t. B(g) ≤ Nbitops, (6)

where B(·) is the measurement of bit-operations (BitOps),
and Nbitops is the predefined threshold.

This approach allows us to better capture the nuanced
impacts of group size on quantization performance, leading
to improved outcomes in both efficiency and image quality.
The algorithm is located in Alg. 1.

5.2. Sample-wise Dynamic Activation Quantization
In UNet-based diffusion quantization, previous studies ei-
ther allocate a set of quantization parameters for all activa-
tions at each timestep [12] or design a multi-layer percep-
tron (MLP) [31] to predict quantization parameters based on
the timestep. However, due to observation 2, these meth-
ods are not compatible with our fine-grained quantization
because assigning quantization parameters to each group at
every timestep results in considerable memory overheads.
Specifically, for a sampler with 50 timesteps, the mem-
ory overhead could reach up to 39% of the full-precision
model’s size.

Inspired by the recent work in LLM optimization [37],
we design an on-the-fly dynamic quantization approach for
activations. Specifically, during inference, the quantization
parameters for each group of the activations are calculated
based on their min-max values. For a given sample i at
timestep t, the quantization parameters for the activation
xi,t can be expressed as:

si,t =
max(xi,t)−min(xi,t)

2b − 1
, (7)

Zi,t = −
⌊
min(xi,t)

si,t

⌉
. (8)

Furthermore, we integrate the dynamic quantization with
min-max computation into the prior operator, which can
benefit from the operator fusion and the overhead becomes
negligible compared to the costly matrix multiplications in
transformer blocks.

Algorithm 1: Automatic quantization granularity
allocation of Q-DiT

Input: Group size search space Sg; number of
layers L; population size Np; iterations
Niter; mutation probability p; Constraint
Nbitops

Initialize population P = {gj}Np

j=1, where each
element in configuration gj ∈ RL is randomly
selected from Sg;

Initialize TopK candidate set STopK = ∅;
for t = 1, 2, . . . , Niter do

for i = 1, 2, . . . , Np do
Calculate FID (or FVD) for each
configuration gj based on Eq. 4 (or Eq. 5);

Update STopK with K configurations, according
to ranked FID (or FVD) scores;

Clear population P = ∅;
repeat

gcross = CrossOver(STopK) with probability
1− p;

Append gcross to P if B(gcross) < Nbitops;
until |P| = Np/2;
repeat

gmutate = Mutate(STopK) with probability p;
Append gmutate to P if
B(gmutate) < Nbitops;

until |P| = Np;

Get the best group size configuration gbest, and use it
to quantize the model;

return quantized model

6. Experiments

6.1. Experimental Setup

Image generation. We first evaluate our Q-DiT on the im-
age generation task, closely following the evaluation setting
used in DiT [27]. We use the pre-trained DiT-XL/2 mod-
els with image resolutions of 256×256 and 512×512, con-
verting them to FP16 as our full precison baseline model.
For fast and accurate sampling, we adopt the DDIM sam-
pler [32] with 50 and 100 sampling steps. Performance is
also evaluated both with and without classifier-free guid-
ance [15]. Note that ”cfg” denotes the classifier-free guid-
ance scale. We sample 10K images for both ImageNet
256×256 and ImageNet 512×512 in each setting, and em-
ploy four metrics in our experiments, including Fréchet In-
ception Distance (FID) [14], spatial FID (sFID) [29], Incep-
tion Score (IS), and Precision.
Video generation. We also evaluate Q-DiT on video gener-
ation, with the STDiT3 model from the Open-Sora project
[41]. Specifically, we sample five 2-second videos for each



Table 2. Results on image generation. We show the quantization results of DiT-XL/2 on ImageNet 256×256 and 512×512. ’W/A’ indicates
the bit-width of weight and activation, respectively.

Model Bit-width (W/A) Method Size (MB) FID ↓ sFID ↓ IS ↑ Precision ↑

DiT-XL/2
256×256

(steps = 100)

16/16 FP 1349 12.40 19.11 116.68 0.6605

6/8

PTQ4DM 508 17.86 25.33 92.24 0.6077
RepQ-ViT 508 27.74 20.91 63.41 0.5600

TFMQ-DM 508 22.33 27.44 72.74 0.5869
PTQ4DiT 508 15.21 21.34 105.03 0.6440

G4W+P4A 520 16.72 24.61 100.09 0.6123
Ours 518 12.21 18.48 117.75 0.6631

4/8

PTQ4DM 339 213.66 85.11 3.26 0.0839
RepQ-ViT 339 224.14 81.24 3.25 0.0373

TFMQ-DM 339 143.47 61.09 5.61 0.0497
PTQ4DiT 339 28.90 34.56 65.73 0.4931

G4W+P4A 351 25.48 25.57 73.46 0.5392
Ours 347 15.76 19.84 98.78 0.6395

DiT-XL/2
256×256

(steps = 100
cfg = 1.5)

16/16 FP 1349 5.31 17.61 245.85 0.8077

6/8

PTQ4DM 508 8.41 25.56 196.73 0.7622
RepQ-ViT 508 10.77 18.53 163.11 0.7264

TFMQ-DM 508 8.87 23.52 194.08 0.7737
PTQ4DiT 508 5.34 18.48 209.90 0.8047

G4W+P4A 520 6.41 19.52 225.48 0.7705
Ours 518 5.32 17.40 243.95 0.8044

4/8

PTQ4DM 339 215.68 86.63 3.24 0.0741
RepQ-ViT 339 226.60 77.93 3.61 0.0337

TFMQ-DM 339 141.90 56.01 6.24 0.0439
PTQ4DiT 339 7.75 22.01 190.38 0.7292

G4W+P4A 351 7.66 20.76 193.76 0.7261
Ours 347 6.40 18.60 211.72 0.7609

DiT-XL/2
512×512

(steps = 50)

16/16 FP 1349 16.01 20.50 97.79 0.7481

6/8

PTQ4DM 508 21.22 20.11 80.07 0.7131
RepQ-ViT 508 19.67 22.35 75.78 0.7082

TFMQ-DM 508 20.99 22.01 71.08 0.6918
PTQ4DiT 508 19.42 21.94 77.35 0.7024

G4W+P4A 520 19.55 22.43 85.56 0.7158
Ours 517 16.21 20.41 96.78 0.7478

4/8

PTQ4DM 339 131.66 75.79 11.54 0.1847
RepQ-ViT 339 105.32 65.63 18.01 0.2504

TFMQ-DM 339 80.70 59.34 29.61 0.2805
PTQ4DiT 339 35.82 28.92 48.62 0.5864

G4W+P4A 351 26.58 24.14 70.24 0.6655
Ours 348 21.59 22.26 81.80 0.7076

DiT-XL/2
512×512

(steps = 50
cfg = 1.5)

16/16 FP 1349 6.27 18.45 204.47 0.8343

6/8

PTQ4DM 508 9.84 26.57 164.91 0.8215
RepQ-ViT 508 8.30 19.19 158.80 0.8153

TFMQ-DM 508 8.34 17.94 162.16 0.8262
PTQ4DiT 508 7.69 18.86 178.34 0.8121

G4W+P4A 520 7.28 19.62 185.92 0.8143
Ours 517 6.24 18.36 202.48 0.8341

4/8

PTQ4DM 339 88.45 50.80 26.79 0.3206
RepQ-ViT 339 79.69 49.76 29.46 0.3413

TFMQ-DM 339 54.61 44.27 58.77 0.4215
PTQ4DiT 339 11.69 22.86 117.34 0.7121

G4W+P4A 351 9.98 20.76 156.07 0.7840
Ours 347 7.82 19.60 174.18 0.8127

prompt in the VBench prompt suite [18] using a 30-step rec-
tified flow scheduler with a cfg scale of 7.0. The results are
assessed across 16 dimensions provided by VBench.

Baselines. We compare Q-DiT with five strong baselines:
1) PTQ4DM [30]: A method specifically designed for

UNet-based diffusion models, focusing on calibration of



Table 3. Results on video generation. We show the quantization results of STDiT3 on VBench. Higher metrics indicate better performance.

Method
Bit-width

(W/A)
Subject

Consistency
Overall

Consistency
Temporal

Style
Appearance

Style
Scene

Spatial
Relationship

Color
Human
Action

FP 16/16 0.9522 0.2667 0.2507 0.2352 0.4094 0.3441 0.7864 0.8680

G4W+P4A 4/8 0.9444 0.2628 0.2489 0.2344 0.3924 0.3265 0.7657 0.8600
Ours 4/8 0.9498 0.2663 0.2511 0.2346 0.3871 0.3810 0.7947 0.8620

Method
Bit-width

(W/A)
Multiple
Objects

Object
Class

Imaging
Quality

Aesthetic
Quality

Dynamic
Degree

Motion
Smoothness

Temporal
Flickering

Background
Consistency

FP 16/16 0.4143 0.8383 0.5829 0.5173 0.6139 0.9855 0.9917 0.9678

G4W+P4A 4/8 0.3540 0.8225 0.5730 0.5018 0.5639 0.9849 0.9895 0.9651
Ours 4/8 0.3904 0.8475 0.5812 0.5160 0.6167 0.9859 0.9915 0.9687

activations.
2) RepQ-ViT [22]: A technique developed for the quanti-

zation of ViTs, aiming to reduce quantization errors in
transformer activations.

3) TFMQ-DM [17]: A PTQ framework specifically devel-
oped for diffusion models to preserve temporal features
during quantization.

4) PTQ4DiT [36]: A tailored PTQ approach for DiTs that
addresses the quantization challenges through CSB and
SSC.

5) G4W+P4A: A robust baseline we build in this work
for both video and image generation tasks, utilizing
GPTQ [10] for weight quantization and PTQ4DM for
activation quantization.

Others. Q-DiT applies asymmetric quantization for both
weights and activations, and uses GPTQ [10] for weight
quantization. A default group size of 128 is adopted, with
optimal group size allocation for each layer determined
through evolutionary search. The search space for group
size Sg is {32, 64, 128, 192, 288}. Note that the group size
for weights and activations within the same layer should be
the same.

6.2. Main Results
Image generation results. The quantitative results for
image generation are shown in Tab. 2. Specifically, in
experiments conducted on ImageNet at a resolution of
256×256, the PTQ4DM, RepQ-ViT, TFMQ-DM, PTQ4DiT
and G4W+P4A methods exhibit significant performance
degradation at a bit-width of W6A8. In contrast, Q-
DiT shows marked improvements over PTQ4DM under the
W6A8 setting, effectively minimizing the impact of quan-
tization. Notably, Q-DiT is closely aligned with the full-
precision configuration, achieving an FID of 12.21 and an
IS of 117.75. These results highlight the effectiveness of
our method in achieving near-lossless compression in the
W6A8 quantization setting. When the bit-width is reduced
to W4A8, the performance disparities among the meth-
ods become more pronounced. In particular, the other five
baselines have severe performance degradation, while our

method substantially outperforms them, dramatically reduc-
ing quantization loss with an FID of 15.76 and an IS of
98.78. This demonstrates a significant preservation of qual-
ity and diversity at lower bit-widths, highlighting the ro-
bustness of our approach under stringent quantization con-
straints. Across varying steps (100 and 50) and classifier-
free guidance scales, our method consistently shows su-
perior performance, closely emulating the full-precision
model metrics. The evaluation on the ImageNet 512×512
dataset demonstrates consistent trends with the 256×256
dataset, indicating that Q-DiT can also perform well in
high-resolution image generation. Visual demonstrations in
Fig. 5 further illustrate that our method maintains superior
image generation quality compared to the baseline.
Video generation results. Tab. 3 shows the results for
video generation. Under a stringent W4A8 quantization
setting, our method consistently outperforms G4W+P4A in
15 out of 16 metrics, exhibiting minimal degradation com-
pared to the full-precision model. This indicates that our
method performs well in terms of preserving video quality
and maintaining video-condition consistency.

6.3. Ablation Studies
To evaluate the effectiveness of each proposed component,
we conduct ablation studies on ImageNet 256×256 with the
DiT-XL/2 model. The sampling steps and classifier-free
guidance scale are set to 100 and 1.5, as detailed in Tab. 4.
Incremental analysis of Q-DiT. We begin our assess-
ment with a round-to-nearest (RTN) baseline, which sim-
ply rounds weights and activations to the nearest available
quantization level. Under the W4A8 configuration, RTN
demonstrates significantly low performance across all met-
rics. Enhancing RTN by adjusting the quantization granu-
larity to a group size of 128 markedly improves the results.
The introduction of dynamic activation quantization led to a
significant boost in generation quality, evidenced by an FID
of 6.64, an sFID of 19.29, and an IS of 211.27. By further
incorporating group size allocation, our approach achieves
an impressive FID of 6.40, approaching the performance of
the full-precision model.



G4W+P4A Ours
G

4W
+P

4A
O

ur
s

a) Castle c) Husky d) Bubbleb) Daisy e) Arctic fox

Figure 5. Qualititive results. Samples generated by G4W+P4A (one of our baselines) and Q-DiT with W4A8 on ImageNet 256×256 and
ImageNet 512×512. For each example (a-e), the image generated by G4W+P4A shows notable artifacts and distortions. In contrast, our
method produces cleaner and more realistic images, with better preservation of textures.

Table 4. Incremental analysis of individual components in our pro-
posed method under the W4A8 setting.

FID ↓ sFID ↓ IS ↑

FP (W16A16) 5.31 17.61 245.85

W4A8 RTN 225.50 88.54 2.96
+ Group size 128 13.77 27.41 146.93

+ Sample-wise Dynamic
activation quantization

6.64 19.29 211.27

+ Automatic quantization
granularity allocation

6.40 18.60 211.72

Comparisons of dynamic activation quantization meth-
ods. We also conducted experiments on activation quantiza-
tion, as shown in Tab. 5. Both TFMQ-DM and our method
are quantized to W16A8 to isolate and compare the im-
pact of activation quantization on overall performance. Our
method achieves an FID of 5.34, demonstrating a signifi-
cant improvement over TFMQ-DM, which has an FID of
7.74. This highlights the effectiveness of our sample-aware
dynamic activation quantization in maintaining model ac-
curacy while reducing performance degradation compared
to TFMQ-DM.
Comparisons of search methods. Furthermore, we also
evaluate the effectiveness of the proposed search method
(Alg. 1) used in group quantization and show the results in
Tab. 6. We can find the proposed method significantly per-
forms better than ILP method [24], Hessian-based search
method [21], and the baseline, which demonstrates the ef-
fectiveness the our method.

7. Conclusion

Our study presents Q-DiT, a novel post-training quantiza-
tion framework designed for DiTs. To address the signif-
icant spatial variance of weights and activations in input

Table 5. Comparisons of dynamic activation quantization methods
with W16A8 setting. TFMQ-DM is a method for timestep-aware
activation quantization, whereas our approach is both timestep-
wise and sample-wise.

Method FID ↓ sFID ↓ IS ↑ Precision↑

FP (W16A16) 5.31 17.61 245.85 0.8077

TFMQ-DM 7.74 19.23 204.56 0.7765
Ours 5.34 17.44 245.24 0.8048

Table 6. Comparisons of the proposed search method and potential
counterparts.

Search method FID ↓ sFID ↓ IS ↑ Precision↑

Group size = 128 6.64 19.29 211.27 0.7548

ILP 6.71 19.20 205.54 0.7538
Hessian-based 7.38 19.41 197.48 0.7385

Ours 6.40 18.60 211.72 0.7609

channels, we introduced an automatic quantization gran-
ularity allocation method. Furthermore, to manage varia-
tions in activation ranges across different timesteps, we im-
plemented dynamic activation quantization that adaptively
adjusts quantization parameters during runtime. Extensive
experiments have underscored the effectiveness of our ap-
proach, showcasing its superiority over existing baselines.
Notably, even when quantizing the model to W4A8 on the
ImageNet 256×256 dataset, the FID increased by only 1.09.
Limitations and future work. One of the primary
limitations of the current Q-DiT approach is its re-
liance on evolutionary algorithms to determine the opti-
mal group size configuration for quantization. This pro-
cess is computationally expensive and time-consuming,
increasing the overall cost and duration of optimiza-
tion. We plan to optimize this part in the future
work.
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